Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer Jiwon Shin

Lecture 7: Path Planning

Path planning

Getting to Zurich HB from WEH D4
> Tram 6,7 to Bahnhofstrasse/HB
> Tram 10 to Bahnhofplatz/HB
> Walk down on Weinbergstrasse to Central then to HB
> Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to HB
> Bike down on Weinbergstrasse to Central, then to HB
> ...

Each path offers different cost in terms of
> Time
> Convenience
> Crowdedness
> Ease

Path planning

Path planning: a collection of discrete motions between a start and a goal

Strategies
> Graph search
> Covert free space to a connectivity graph
> Apply graph search algorithm to find a path to the goal
$>$ Potential field planning
> Impose a mathematical function directly on the free space
> Follow the gradient of the function to get to the goal

Configuration space

Configuration space C
\Rightarrow A set of all possible configurations of a robot
$>$ In mobile robots, configuration (pose) is represented by (x, y, θ)
$>$ For a differential-drive robot, there are limited robot velocities in each configuration.

For path planning, assume that
$>$ the robot is holonomic
> the robot has a point-mass
> Must inflate the obstacles in a map to compensate

Configuration space: point-mass robot

Configuration space: circular robot

Path planning: graph search

> Graph construction
> Visibility graph
> Voronoi diagram
> Exact cell decomposition
> Approximate cell decomposition
$>$ Graph search
> Deterministic graph search
> Randomized graph search

Visibility graph

Visibility graph

Advantages
> Optimal path in terms of path length
> Simple to implement

Issues
$>$ Number of edges and nodes increase with the number of obstacle polygons
> Fast in sparse environments, but slow and inefficient in densely populated environments
> Resulting path takes the robot as close as possible to obstacles
> A modification to the optimal solution is necessary to ensure safety

- Grow obstacles by radius much larger than robot's radius
- Modify the solution path to be away from obstacles

Voronoi diagram

Voronoi diagram

> For each point in free space, compute its distance to the nearest obstacle.
> At points that are equidistant to two or more obstacles, create ridge points.
$>$ Connect the ridge points to create the Voronoi diagram

Voronoi diagram

Advantages
> Maximize the distance between a robot and obstacles
> Keeps the robot as safe as possible
\Rightarrow Executability
> A robot with a long-range sensor can follow a Voronoi edge in the physical world using simple control rules: maximize the readings of local minima in the sensor values.

Issues
$>$ Not the shortest path in terms of total path length.
> Robots with short-range sensor may fail to localize.

Exact cell decomposition

Exact cell decomposition

Advantages
$>$ In a sparse environment, the number of cells is small regardless of actual environment size.
> Robots can move around freely within a free cell.

Issues

$>$ The number of cells depends on the destiny and complexity of obstacles in the environment

Approximate cell decomposition

Variable-size cell decomposition

Approximate cell decomposition

Fixed-size cell decomposition

Approximate cell decomposition

Variable-size
$>$ Recursively divide the space into rectangles unless
> A rectangle is completely occupied or completely free
> Stop the recursion when

- A path planner can compute a solution, or
> A limit on resolution is attained

Fixed-size
$>$ Divide the space evenly
> The cell size is often independent of obstacles

Approximate cell decomposition

Advantages
> Low computational complexity

Issues

> Narrow passage ways can be lost

Connectivity

d 1	n 2	d 2		
n 1	c	n 3		
d 4	n 4	d 3		

Four-connected

Eight-connected

Grid map inflation

Free space

Deterministic graph search
Convert the environment map into a connectivity graph Find the best path (lowest cost) in the connectivity graph

$$
f(n)=g(n)+\varepsilon h(n)
$$

$>f(n)$: Expected total cost
$>g(n)$: Path cost
$>h(n)$: Heuristic cost
$>\varepsilon$: Weighting factor
$>\mathrm{n}$: node/grid cell

$$
g(n)=g\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)
$$

$>c\left(n, n^{\prime}\right):$ edge traversal cost

$f(n)=g(n)$ where $c\left(n, n^{\prime}\right)=1$

Depth-first search

$f(n)=g(n)$ where $c\left(n, n^{\prime}\right)=1$

Breadth-first search vs depth-first search

Breadth-first
> Expand all nodes in the order of proximity.
$>$ All paths need to be stored.
$>$ Finds a path has the fewest number of edges between the start and the goal.
$>$ If all edges have the same cost, the solution path is the minimum-cost path.

Depth-first
> Expand each node up to the deepest level of the graph first.
> May revisit previously visited nodes or redundant paths.
> Reduction in space complexity: Only need to store a single path.

Dijkstra's algorithm

Start

$$
f(n)=g(n)+0 * h(n)
$$

$f(n)=g(n)+h(n)$

A* algorithm

```
A*_shortest_path (map: GRAPH; start_node: NODE; goal_node: NODE )
local
    c:NODE
do
    initialize_search(start_node,goal_node )
    from until is_closed(goal_node ) or not has_open_node loop
    c:= open_list.loweset_expected_cost_node
    open_list.remove(c)
    closed_list.add(c )
    if c = goal_node then
        reconstruct_path ( c )
    elseif
            across map.neighboring_nodes(c ) as n loop
                if not map.is_occupied( }n\mathrm{ ) and not closed_list.has( n ) then
                        if not open_list.has( }n\mathrm{ ) then
                    open_list.add(n, c )
                        elseif compute_expected_cost(n,c)< n.expected_cost then
                    open_list.update( n, c )
                end
            end
        end
    end
end
```


A* algorithm: cost computation

Manhattan distance (4-connected path)
\Rightarrow Path cost $g(n)=g\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$

$>$ Edge traversal cost: $c\left(n, n^{\prime}\right)=1$
$>$ Heuristic cost: $h(n)=\# x+\# y$
> $\# x=\#$ of cells between n and goal in x-direction
> $\# y=\#$ of cells between n and goal in x-direction

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 1
\Rightarrow Path cost $g(n)=g\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$

$>$ Edge traversal cost: $c\left(n, n^{\prime}\right)=1$
$>$ Heuristic cost: $h(n)=\max (\# x, \# y)$
$>\# x=\#$ of cells between n and goal in x-direction
> \#y = \# of cells between n and goal in y-direction

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 2
$>$ Path cost $g(n)=g\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$

> Edge traversal cost:

$$
\begin{aligned}
& c\left(n, n^{\prime}\right)=1 \text { if } n \text { is north, south, east, west of } n^{\prime} \\
& c\left(n, n^{\prime}\right)=\sqrt{ } \text { if } n \text { is a diagonal neighbor of } n^{\prime}
\end{aligned}
$$

$>$ Heuristic cost:

$$
\begin{aligned}
& h(n)=(\# y * \sqrt{2}+\# x-\# y) \text { if } \# x>\# y \\
& h(n)=(\# x * \sqrt{2}+\# y-\# x) \text { if } \# x<\# y
\end{aligned}
$$

$>\# x=\#$ of cells between n and goal in x-direction
> \#y = \# of cells between n and goal in y-direction
A^{*} algorithm: cost computation

Diagonal distance (8-connected path): Case 3
$>$ Path cost $g(n)=g\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$

> Edge traversal cost:

$$
c\left(n, n^{\prime}\right)=\text { Euclidean distance }
$$

$>$ Heuristic cost: $h(n)=D^{\star} S\left(d x^{\star} d x+d y^{\star} d y\right)$

$$
\begin{aligned}
& >d x=\| n . x-\text { goal. } x \| \\
& >d y=\| \text { n. } y-\text { goal.y } \|
\end{aligned}
$$

A^{*} : heuristic cost and speed

$>h(n)<=$ actual cost from n to goal
$>A^{*}$ is guaranteed to find a shortest path. The lower $h(n)$ is, the more node A^{*} expands, making it slower.
> $h(n)=0$, then we have Dijkstra's algorithm
$>h(n)=$ actual cost from n to goal
$>A^{*}$ will only follow the best path and never expand anything else, making it very fast.
$>h(n)>$ actual cost from n to goal
$>A^{*}$ is not guaranteed to find a shortest path, but it can run faster.
> $h(n) \gg g(n)$, then we have Greedy Best-First-Search: selects vertex closest to the goal

Dijkstra's algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Greedy best-first search

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

Randomized graph search

- Initialize a tree
$>$ Add nodes to the tree until a termination condition is triggered
> During each step:
> Pick a random configuration $q_{\text {rand }}$ in the free space.
> Compute the tree node $q_{\text {near }}$ closest to $q_{\text {rand }}$
$>$ Grow an edge (with a fixed length) from $q_{\text {near }}$ to $q_{\text {rand }}$
> Add the end $q_{\text {new }}$ of the edge if it is collision free

Randomized graph search

Advantages
> Can address situations in which exhaustive search is not an option.

Issues
> Cannot guarantee solution optimality.
>Cannot guarantee deterministic completeness.
> If there is a solution, the algorithm will eventually find it as the number of nodes added to the tree grows to infinity.

Path planning strategies

> Graph search
> Covert free space to a connectivity graph
> Apply graph search algorithm to find a path to the goal
> Potential field planning
> Impose a mathematical function directly on the free space
> Follow the gradient of the function to get to the goal

Potential field

Create a gradient to direct the robot to the goal position

Main idea
$>$ Robots are attracted toward the goal.
> Robots are repulsed by obstacles.

$$
F(q)=-\nabla U(q)
$$

$>F(q)$: artificial force acting on the robot at the position $q=(x, y)$
$>U(q)$: potential field function
$>\nabla U(q)$: gradient vector of U at position q
$>U(q)=U_{\text {attractive }}(q)+U_{\text {repulsive }}(q)$
$>\mathrm{F}(\mathrm{q})=\mathrm{F}_{\text {attractive }}(\mathrm{q})+\mathrm{F}_{\text {repulsive }}(\mathrm{q})=-\nabla \mathrm{U}_{\text {attractive }}(\mathrm{q})-\nabla \mathrm{U}_{\text {repulsive }}(q)$

Attractive potential

$$
U_{\text {attractive }}(q)=\frac{1}{2} k_{\text {attrative }} \cdot \rho_{\text {goal }}^{2}(q)
$$

$>\mathrm{k}_{\text {attrative }}$: a positive scaling factor
$>\rho_{\text {goal }}(q)$: Euclidean distance $\left\|q-q_{\text {goal }}\right\|$

$$
\begin{aligned}
\mathrm{F}_{\text {attractive }}(q) & =-\nabla U_{\text {attractive }}(q) \\
& =-k_{\text {attrative }} \rho_{\text {goal }}(q) \nabla \rho_{\text {goal }}(q) \\
& =-k_{\text {attrative }}\left(q-q_{\text {goal }}\right)
\end{aligned}
$$

> Linearly converges toward 0 as the robot reaches the goal

Repulsive potential

$$
U_{\text {repulsive }}(q)=\left\{\begin{array}{cl}
\frac{1}{2} k_{\text {repulsive }}\left(\frac{1}{\rho(q)}-\frac{1}{\rho_{0}}\right)^{2} & \rho(q) \leq \rho_{0} \\
0 & \rho(q)>\rho_{0}
\end{array}\right.
$$

$>\mathrm{k}_{\text {repulsive }}$ a positive scaling factor
$>\rho(q)$: minimum distance from q to an object
$>\rho_{0}$: distance of influence of the object

$$
\begin{aligned}
\mathrm{F}_{\text {repulsive }}(q) & =-\nabla U_{\text {repulsive }}(q) \\
& =\left\{\begin{array}{cl}
k_{\text {repulsive }}\left(\frac{1}{\rho(q)}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho^{2}(q)} \frac{q-q_{\text {obstacle }}}{\rho(q)} & \rho(q) \leq \rho_{0} \\
0 & \rho(q) \leq \rho_{0}
\end{array}\right.
\end{aligned}
$$

$>$ Only for convex obstacles that are piecewise differentiable

Potential field

Advantages
$>$ Both plans the path and determines the control for the robot.
$>$ Smoothly guides the robot towards the goal.

Issues

$>$ Local minima are dependent on the obstacle shape and size.
\Rightarrow Concave objects may lead to several minimal distances, which can cause oscillation

