

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer Jiwon Shin

Lecture 7: Path Planning

Path planning

Getting to Zurich HB from WEH D4

- Tram 6, 7 to Bahnhofstrasse/HB
- Tram 10 to Bahnhofplatz/HB
- Walk down on Weinbergstrasse to Central then to HB
- Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to HB
- > Bike down on Weinbergstrasse to Central, then to HB

Each path offers different cost in terms of

> Time

▶ ...

- Convenience
- Crowdedness
- ► Ease

Path planning: a collection of discrete motions between a start and a goal

- Strategies
- Graph search
 - Covert free space to a connectivity graph
 - Apply graph search algorithm to find a path to the goal
- Potential field planning
 - Impose a mathematical function directly on the free space
 - Follow the gradient of the function to get to the goal

Configuration space C

- A set of all possible configurations of a robot
- > In mobile robots, configuration (pose) is represented by (x, y, θ)
- For a differential-drive robot, there are limited robot velocities in each configuration.

For path planning, assume that

- \succ the robot is holonomic
- \succ the robot has a point-mass
 - Must inflate the obstacles in a map to compensate

Configuration space: point-mass robot

Configuration space: circular robot

Path planning: graph search

Graph construction

- Visibility graph
- > Voronoi diagram
- Exact cell decomposition
- Approximate cell decomposition
- Graph search
 - Deterministic graph search
 - Randomized graph search

Graph construction

•

Visibility graph

•

Visibility graph

Advantages

- Optimal path in terms of path length
- Simple to implement

Issues

- Number of edges and nodes increase with the number of obstacle polygons
 - Fast in sparse environments, but slow and inefficient in densely populated environments
- Resulting path takes the robot as close as possible to obstacles
 - A modification to the optimal solution is necessary to ensure safety
 - Grow obstacles by radius much larger than robot's radius
 - Modify the solution path to be away from obstacles

Voronoi diagram

•

Voronoi diagram

- For each point in free space, compute its distance to the nearest obstacle.
- > At points that are equidistant to two or more obstacles, create ridge points.
- > Connect the ridge points to create the Voronoi diagram

Voronoi diagram

Advantages

- Maximize the distance between a robot and obstacles
 - Keeps the robot as safe as possible
- Executability
 - A robot with a long-range sensor can follow a Voronoi edge in the physical world using simple control rules: maximize the readings of local minima in the sensor values.

Issues

- > Not the shortest path in terms of total path length.
- > Robots with short-range sensor may fail to localize.

Exact cell decomposition

•

Advantages

- In a sparse environment, the number of cells is small regardless of actual environment size.
- > Robots can move around freely within a free cell.

Issues

The number of cells depends on the destiny and complexity of obstacles in the environment

Approximate cell decomposition

Variable-size cell decomposition

Approximate cell decomposition

Fixed-size cell decomposition

Variable-size

- Recursively divide the space into rectangles unless
 - > A rectangle is completely occupied or completely free
- Stop the recursion when
 - > A path planner can compute a solution, or
 - > A limit on resolution is attained

Fixed-size

- Divide the space evenly
 - > The cell size is often independent of obstacles

Approximate cell decomposition

Advantages

Low computational complexity

Issues

> Narrow passage ways can be lost

Four-connected

Eight-connected

Grid map inflation

Graph search

Deterministic graph search

Convert the environment map into a connectivity graph Find the best path (lowest cost) in the connectivity graph

 $f(n) = g(n) + \varepsilon h(n)$

- > f(n): Expected total cost
- > g(n): Path cost
- h(n): Heuristic cost
- ε: Weighting factor
- n: node/grid cell

g(n) = g(n') + c(n, n')

c(n, n'): edge traversal cost

Breadth-first search

f(n) = g(n) where c(n, n') = 1

Depth-first search

f(n) = g(n) where c(n, n') = 1

•

Breadth-first

- Expand all nodes in the order of proximity.
- > All paths need to be stored.
- Finds a path has the fewest number of edges between the start and the goal.
- If all edges have the same cost, the solution path is the minimum-cost path.

Depth-first

- Expand each node up to the deepest level of the graph first.
- May revisit previously visited nodes or redundant paths.
- Reduction in space complexity:
 Only need to store a single path.

Dijkstra's algorithm

f(n) = g(n) + 0 * h(n)

•)

A* algorithm

Start

f(n) = g(n) + h(n)

A* algorithm

A*_shortest_path (map: GRAPH; start_node: NODE; goal_node: NODE) local

c : NODE

do

end

```
initialize_search ( start_node, goal_node )
from until is_closed( goal_node ) or not has_open_node loop
     c := open_list.loweset_expected_cost_node
    open_list.remove( c )
     closed_list.add( c )
     if c = goal_node then
           reconstruct_path ( c )
    elseif
           across map.neighboring_nodes( c ) as n loop
               if not map.is_occupied(n) and not closed_list.has(n) then
                      if not open_list.has( n ) then
                         open_list.add(n, c)
                      elseif compute_expected_cost( n, c ) < n.expected_cost then</pre>
                         open_list.update( n, c )
               end
         end
    end
end
```

Manhattan distance (4-connected path)

- Path cost g(n) = g(n') + c(n,n')
- Edge traversal cost: c(n,n') = 1
- Heuristic cost: h(n) = #x + #y
 - #x = # of cells between n and goal in x-direction
 - #y = # of cells between n and goal in x-direction

Diagonal distance (8-connected path): Case 1

- Path cost g(n) = g(n') + c(n,n')
- Edge traversal cost: c(n,n') = 1
- Heuristic cost: h(n) = max (#x, #y)
 - #x = # of cells between n and goal in x-direction
 - #y = # of cells between n and goal in y-direction

Diagonal distance (8-connected path): Case 2

Path cost g(n) = g(n') + c(n,n')

Edge traversal cost: c(n,n') = 1 if n is north, south, east, west of n' c(n,n') = √2 if n is a diagonal neighbor of n'

Heuristic cost:

h(n) = (#y * J2 + #x - #y) if #x > #y
h(n) = (#x * J2 + #y - #x) if #x < #y
> #x = # of cells between n and goal in x-direction
> #y = # of cells between n and goal in y-direction

Diagonal distance (8-connected path): Case 3

- Path cost g(n) = g(n') + c(n,n')
- Edge traversal cost: c(n,n') = Euclidean distance
- Heuristic cost: h(n) = D*√(dx*dx + dy*dy)
 dx = || n.x goal.x ||
 dy = || n.y goal.y ||

A*: heuristic cost and speed

- h(n) <= actual cost from n to goal</p>
 - A* is guaranteed to find a shortest path. The lower h(n) is, the more node A* expands, making it slower.
 - h(n) = 0, then we have Dijkstra's algorithm
- h(n) = actual cost from n to goal
 - A* will only follow the best path and never expand anything else, making it very fast.
- h(n) > actual cost from n to goal
 - A* is not guaranteed to find a shortest path, but it can run faster.
 - h(n) >> g(n), then we have Greedy Best-First-Search: selects vertex closest to the goal

Dijkstra's algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html 37

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

- Initialize a tree
- Add nodes to the tree until a termination condition is triggered
- During each step:
 - > Pick a random configuration q_{rand} in the free space.
 - > Compute the tree node q_{near} closest to q_{rand}
 - > Grow an edge (with a fixed length) from q_{near} to q_{rand}
 - > Add the end q_{new} of the edge if it is collision free

Advantages

> Can address situations in which exhaustive search is not an option.

Issues

- Cannot guarantee solution optimality.
- Cannot guarantee deterministic completeness.
- If there is a solution, the algorithm will eventually find it as the number of nodes added to the tree grows to infinity.

- ➤ Graph search
 - Covert free space to a connectivity graph
 - > Apply graph search algorithm to find a path to the goal
- Potential field planning
 - Impose a mathematical function directly on the free space
 - Follow the gradient of the function to get to the goal

Create a gradient to direct the robot to the goal position

Main idea

- > Robots are attracted toward the goal.
- Robots are repulsed by obstacles.

 $\mathsf{F}(\mathsf{q}) = - \nabla \mathsf{U}(\mathsf{q})$

- > F(q): artificial force acting on the robot at the position q = (x, y)
- > U(q): potential field function
- PU(q): gradient vector of U at position q

$$U(q) = U_{attractive}(q) + U_{repulsive}(q)$$

$$F(q) = F_{attractive}(q) + F_{repulsive}(q) = -\nabla U_{attractive}(q) - \nabla U_{repulsive}(q)$$

Sum of two fields

45

Resulting path

Image from lecture notes by Benjamin Kuipers

$$U_{\text{attractive}}(q) = \frac{1}{2} k_{\text{attrative}} \cdot \rho^2_{\text{goal}}(q)$$

k_{attrative}: a positive scaling factor
 ρ_{goal}(q): Euclidean distance ||q - q_{goal}||

$$F_{\text{attractive}}(q) = - \nabla U_{\text{attractive}}(q)$$

= - k_{attrative} p_{goal}(q) \nabla p_{goal}(q)
= - k_{attrative} (q - q_{goal})

> Linearly converges toward 0 as the robot reaches the goal

Repulsive potential

$$U_{\text{repulsive}}(q) = \begin{cases} \frac{1}{2} \ k_{\text{repulsive}} \left(\begin{array}{c} \frac{1}{\rho(q)} - \frac{1}{\rho_0} \end{array} \right)^2 & \rho(q) \le \rho_0 \\ 0 & \rho(q) > \rho_0 \end{cases}$$

- k_{repulsive}: a positive scaling factor
 ρ(q): minimum distance from q to an object
 a i distance of influence of the object
- \succ ρ_0 : distance of influence of the object

$$\begin{split} \mathsf{F}_{\mathsf{repulsive}}(q) &= - \nabla \mathsf{U}_{\mathsf{repulsive}}(q) \\ &= \begin{cases} \mathsf{k}_{\mathsf{repulsive}} \left(\begin{array}{c} \frac{1}{\rho(q)} - \frac{1}{\rho_0} \end{array} \right) \frac{1}{\rho^2(q)} & \frac{q - q_{\mathsf{obstacle}}}{\rho(q)} & \rho(q) \leq \rho_0 \\ 0 & \rho(q) \leq \rho_0 \end{cases} \end{split}$$

> Only for convex obstacles that are piecewise differentiable

Potential field

Advantages

- > Both plans the path and determines the control for the robot.
- > Smoothly guides the robot towards the goal.

Issues

- > Local minima are dependent on the obstacle shape and size.
- Concave objects may lead to several minimal distances, which can cause oscillation