
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 7: Path Planning

2

Getting to Zurich HB from WEH D4

 Tram 6, 7 to Bahnhofstrasse/HB

 Tram 10 to Bahnhofplatz/HB

 Walk down on Weinbergstrasse to Central then to HB

 Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to
HB

 Bike down on Weinbergstrasse to Central, then to HB

 ...

Each path offers different cost in terms of

 Time

 Convenience

 Crowdedness

 Ease

 ...

Path planning

3

Path planning

Path planning: a collection of discrete motions between a start and a
goal

Strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

4

Configuration space

Configuration space C

 A set of all possible configurations of a robot

 In mobile robots, configuration (pose) is represented by (x, y, θ)

 For a differential-drive robot, there are limited robot velocities in
each configuration.

For path planning, assume that

 the robot is holonomic

 the robot has a point-mass

 Must inflate the obstacles in a map to compensate

5

Configuration space: point-mass robot

Free space

Obstacle

6

Configuration space: circular robot

Free space

Obstacle

7

Path planning: graph search

 Graph construction

 Visibility graph

 Voronoi diagram

 Exact cell decomposition

 Approximate cell decomposition

 Graph search

 Deterministic graph search

 Randomized graph search

8

Graph construction

9

Visibility graph

Goal

Start

10

Visibility graph

Advantages

 Optimal path in terms of path length

 Simple to implement

Issues

 Number of edges and nodes increase with the number of obstacle
polygons

 Fast in sparse environments, but slow and inefficient in
densely populated environments

 Resulting path takes the robot as close as possible to obstacles

 A modification to the optimal solution is necessary to
ensure safety

• Grow obstacles by radius much larger than robot’s radius

• Modify the solution path to be away from obstacles

11

Voronoi diagram

Goal

Start

12

Voronoi diagram

 For each point in free space, compute its distance to the nearest
obstacle.

 At points that are equidistant to two or more obstacles, create
ridge points.

 Connect the ridge points to create the Voronoi diagram

13

Voronoi diagram

Advantages

 Maximize the distance between a robot and obstacles

 Keeps the robot as safe as possible

 Executability

 A robot with a long-range sensor can follow a Voronoi edge
in the physical world using simple control rules: maximize
the readings of local minima in the sensor values.

Issues

 Not the shortest path in terms of total path length.

 Robots with short-range sensor may fail to localize.

14

Exact cell decomposition

Goal

Start

15

Exact cell decomposition

Advantages

 In a sparse environment, the number of cells is small regardless of
actual environment size.

 Robots can move around freely within a free cell.

Issues

 The number of cells depends on the destiny and complexity of
obstacles in the environment

16

Approximate cell decomposition

Variable-size cell decomposition

Goal

Start

17

Approximate cell decomposition

Fixed-size cell decomposition

Start

Goal

18

Approximate cell decomposition

Variable-size

 Recursively divide the space into rectangles unless

 A rectangle is completely occupied or completely free

 Stop the recursion when

 A path planner can compute a solution, or

 A limit on resolution is attained

Fixed-size

 Divide the space evenly

 The cell size is often independent of obstacles

19

Approximate cell decomposition

Advantages

 Low computational complexity

Issues

 Narrow passage ways can be lost

20

Connectivity

Four-connected Eight-connected

d4n4
n1
d1

c
n2

d3
n3
d2

n1

n2

c

n4

n3

d1 d2

d4 d3

n1

n2

c

n4

n3

d1 d2

d4 d3

21

Grid map inflation

Free space

Obstacle

22

Graph search

Goal

Start

A

B

C

D

E

F

G

23

Deterministic graph search

Convert the environment map into a connectivity graph

Find the best path (lowest cost) in the connectivity graph

f(n) = g(n) + ε h(n)

 f(n): Expected total cost

 g(n): Path cost

 h(n): Heuristic cost

 ε: Weighting factor

 n: node/grid cell

g(n) = g(n’) + c(n, n’)

 c(n, n’): edge traversal cost

24

Breadth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal

f(n) = g(n) where c(n, n’) = 1

25

Depth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal G

Goal Goal

f(n) = g(n) where c(n, n’) = 1

26

Breadth-first search vs depth-first search

Breadth-first
 Expand all nodes in the order

of proximity.

 All paths need to be stored.

 Finds a path has the fewest
number of edges between the
start and the goal.

 If all edges have the same
cost, the solution path is the
minimum-cost path.

Depth-first
 Expand each node up to the

deepest level of the graph
first.

 May revisit previously visited
nodes or redundant paths.

 Reduction in space complexity:
Only need to store a single
path.

27

Dijkstra’s algorithm

Goal

Start

A

B

C

D

E

F

G

f(n) = g(n) + 0 * h(n)

Start

A D

B FE G

C Goal

28

A* algorithm

Goal

Start

A

B

C

D

E

F

G

Start

A D

G

Goal

f(n) = g(n) + h(n)

29

A*_shortest_path (map: GRAPH; start_node: NODE; goal_node: NODE)

local

c : NODE

do

initialize_search (start_node, goal_node)

from until is_closed(goal_node) or not has_open_node loop

c := open_list.loweset_expected_cost_node

open_list.remove(c)

closed_list.add(c)

if c = goal_node then

reconstruct_path (c)

elseif

across map.neighboring_nodes(c) as n loop

if not map.is_occupied(n) and not closed_list.has(n) then

if not open_list.has(n) then

open_list.add(n, c)

elseif compute_expected_cost(n, c) < n.expected_cost then

open_list.update(n, c)

end

end

end

end

end

A* algorithm

30

A* algorithm: cost computation

Manhattan distance (4-connected path)

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = #x + #y

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in x-direction

31

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 1

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost: c(n,n’) = 1

 Heuristic cost: h(n) = max (#x, #y)

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction

32

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 2

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost:

c(n,n’) = 1 if n is north, south, east, west of n’

c(n,n’) = √2 if n is a diagonal neighbor of n’

 Heuristic cost:

h(n) = (#y * √2 + #x - #y) if #x > #y

h(n) = (#x * √2 + #y - #x) if #x < #y

 #x = # of cells between n and goal in x-direction

 #y = # of cells between n and goal in y-direction

33

A* algorithm: cost computation

Diagonal distance (8-connected path): Case 3

 Path cost g(n) = g(n’) + c(n,n’)

 Edge traversal cost:

c(n,n’) = Euclidean distance

 Heuristic cost: h(n) = D*√(dx*dx + dy*dy)

 dx = || n.x – goal.x ||

 dy = || n.y – goal.y ||

34

A*: heuristic cost and speed

 h(n) <= actual cost from n to goal

 A* is guaranteed to find a shortest path. The lower h(n) is,
the more node A* expands, making it slower.

 h(n) = 0, then we have Dijkstra’s algorithm

 h(n) = actual cost from n to goal

 A* will only follow the best path and never expand anything
else, making it very fast.

 h(n) > actual cost from n to goal

 A* is not guaranteed to find a shortest path, but it can run
faster.

 h(n) >> g(n), then we have Greedy Best-First-Search: selects
vertex closest to the goal

35

Dijkstra’s algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

36

Greedy best-first search

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

37

A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

38

Randomized graph search

http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

39

Randomized graph search

 Initialize a tree

 Add nodes to the tree until a termination condition is triggered

 During each step:

 Pick a random configuration qrand in the free space.

 Compute the tree node qnear closest to qrand

 Grow an edge (with a fixed length) from qnear to qrand

 Add the end qnew of the edge if it is collision free

40

Randomized graph search

Advantages

 Can address situations in which exhaustive search is not an option.

Issues

 Cannot guarantee solution optimality.

 Cannot guarantee deterministic completeness.

 If there is a solution, the algorithm will eventually find it as the
number of nodes added to the tree grows to infinity.

41

Path planning strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

42

Potential field

Create a gradient to direct the robot to the goal position

Main idea

 Robots are attracted toward the goal.

 Robots are repulsed by obstacles.

F(q) = - 𝛻U(q)

 F(q): artificial force acting on the robot at the position q = (x, y)

 U(q): potential field function

 𝛻U(q): gradient vector of U at position q

 U(q) = Uattractive(q) + Urepulsive(q)

 F(q) = Fattractive(q) + Frepulsive(q) = - 𝛻Uattractive(q) - 𝛻Urepulsive(q)

43

Attractive potential

Image from lecture notes by Benjamin Kuipers

44

Repulsive potential

Image from lecture notes by Benjamin Kuipers

45

Sum of two fields

Image from lecture notes by Benjamin Kuipers

46

Resulting path

Image from lecture notes by Benjamin Kuipers

47

Attractive potential

Uattractive(q) =
1

2
kattrative ∙ ρ2

goal(q)

 kattrative: a positive scaling factor

 ρgoal(q): Euclidean distance ||q - qgoal||

Fattractive(q) = - 𝛻Uattractive(q)

= - kattrative ρgoal(q) 𝛻 ρgoal(q)

= - kattrative (q - qgoal)

 Linearly converges toward 0 as the robot reaches the goal

48

Repulsive potential

Urepulsive(q) =

1

2
krepulsive (

1

ρ(q)
−

1

ρ0
)2 ρ(q) ≤ ρ0

0 ρ(q) > ρ0

 krepulsive: a positive scaling factor

 ρ(q): minimum distance from q to an object

 ρ0: distance of influence of the object

Frepulsive(q) = - 𝛻Urepulsive(q)

=
krepulsive (

1

ρ(q)
−

1

ρ0
)

1

ρ2(q)
q − qobstacle

ρ(q)
ρ(q) ≤ ρ0

0 ρ(q) ≤ ρ0

 Only for convex obstacles that are piecewise differentiable

49

Potential field

Advantages

 Both plans the path and determines the control for the robot.

 Smoothly guides the robot towards the goal.

Issues

 Local minima are dependent on the obstacle shape and size.

 Concave objects may lead to several minimal distances, which can
cause oscillation

