Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 5: Obstacle Avoidance

Bug algorithms

> Known:

- Goal position
> Current position
> Sensing ability to detect nearby obstacles
$>$ Sense -> Act: does not store any past information
> Sensor:
> Bug 0, Bug 1, Bug 2: tactile sensor
> Tangent Bug: range sensor

1. Move toward the goal:
2. If the goal is reached: Stop
3. If an obstacle is in the way: Go to step 2
4. Follow the obstacle boundary:
5. If no obstacle in the way, go back to step 1.

When does Bug 0 fail?

Goal

Bug 1

Goal

1. Move toward the goal:
2. If the goal is reached: Stop
3. If an obstacle is in the way: Go to step 2
4. Follow the obstacle boundary:
5. Mark the closest
6. After a complete loop: Go to the closest point to the goal then go back to step 1.

Lumelsky, V. \& Stepanov, A. "Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape," . Algorithmica 2:403-430. 1987

Will Bug 1 fail?

Goal

How much would Bug 1 travel?

Given
> D: distance between start and goal
> P_{i} : Perimeter of i^{\prime} th obstacle

Shortest travel distance?
$>D$
Longest travel distance?
$>D+1.5 \sum_{i} P_{i}$

Bug 2

1. Move toward the goal:
2. If the goal is reached: Stop
3. If an obstacle is in the way: Go to step 2
4. Follow the obstacle boundary:
5. If the goal line is crossed: Go to step 1.

Lumelsky , V. \& Skewis, T. "Incorporating range sensing in the robot navigation function," IEEE Transactions on Systems, Man, and Cybernatics 20(5): 1058-1068, 1990.

Is crossing the goal line important?

Bug 0

Bug 2

Goal

Goal

How well does Bug 2 work?

How much would Bug 2 travel?

Given
> D: distance between start and goal
> P_{i} : Perimeter of isth obstacle
$>n_{i}$: number of times i 'th obstacle crosses the goal line

Shortest travel distance?
$>D$
Longest travel distance?
$\Rightarrow D+1 / 2 \sum_{i} n_{i} P_{i}$

Bug 1 vs Bug 2

Bug 1

- Exhaustive search: analyze all choices before committing
> More predictable performance

Bug 2

> Greedy search: take the firs \dagger viable choice
$>$ Generally outperforms Bug 1 but could be worse if the obstacles are complex

Can we do better if we can see more?

TangentBug

1. Move toward the goal:
2. If the goal is reached: Stop
3. If a local minimum is detected: Go to step 2
4. Move along the boundary marking $\mathrm{d}_{\text {min }}$:
5. If the goal is reached: Stop
6. If $d\left(V_{\text {leave }}\right.$, goal $)<d_{\min }: G o$ to step 3
7. Perform the transition phase:
8. Move directly towards $V_{\text {leave }}$ until Z, where $d(Z$, goal) < $d_{\text {min }}$: Go to step 1
Kamon, I., Simon, E. \& Rivlin, E. "TangentBug: A Range-Sensor-Based Navigation Algorithm," The International Journal of Robotics Research. 17(9): 934-953, 1998.

Visibility graph \& tangent graph

Visibility graph

Local tangent graph

$d(V$, goal $)<d(x$, goal $)$ for all V

Wall Following

Leave condition detection

Sensor range

Zero

Infinite

Unreachable goal

Loop closure

