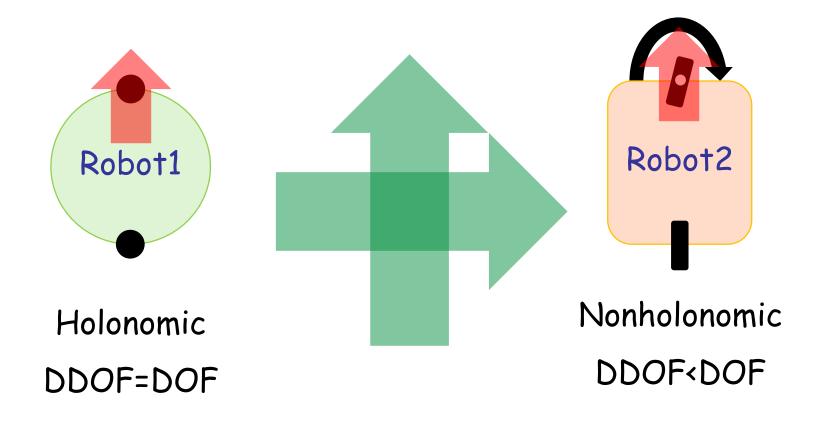
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer Jiwon Shin

Lecture 3: Robot Control

Go forward, go right



DOF: Ability to achieve various poses

DDOF: Ability to achieve various velocities

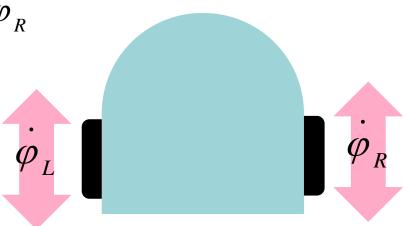
Differential drive

Forward: $\dot{\varphi}_{\scriptscriptstyle L}=\dot{\varphi}_{\scriptscriptstyle R}>0$

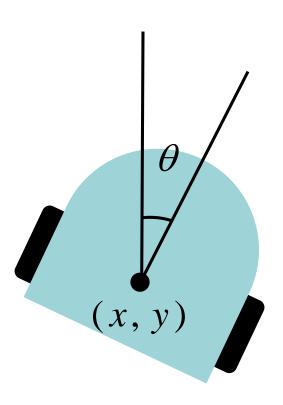
Backward: $\dot{\varphi}_{\scriptscriptstyle L}=\dot{\varphi}_{\scriptscriptstyle R}<0$

Right turn: $\dot{\phi}_{\scriptscriptstyle L} > \dot{\phi}_{\scriptscriptstyle R}$

Left turn: $\dot{\varphi}_{\scriptscriptstyle L} < \dot{\varphi}_{\scriptscriptstyle R}$



Differential drive



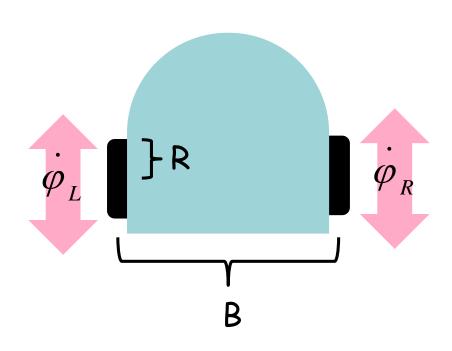
Input:
$$(v, \omega)$$

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \omega$$

Differential drive



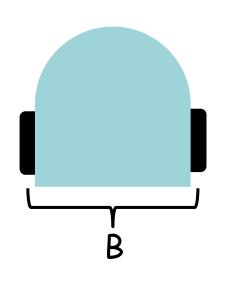
$$\dot{x} = R \frac{(\dot{\varphi}_L + \dot{\varphi}_R)}{2} \cos \theta$$

$$\dot{y} = R \frac{(\dot{\varphi}_L + \dot{\varphi}_R)}{2} \sin \theta$$

$$\dot{\theta} = \frac{R}{B} (\dot{\varphi}_R - \dot{\varphi}_L)$$

Odometry: intuition

Odometry for small t





$$d_C = \frac{1}{2}(d_L + d_R)$$

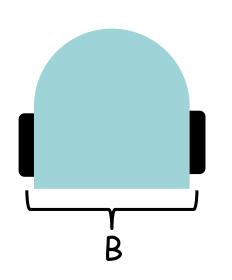
$$\theta_C = \frac{d_R - d_L}{P}$$

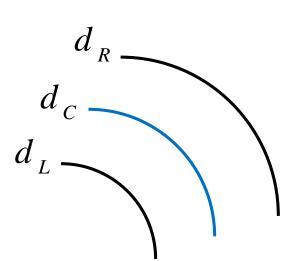
$$x(t) = x(t-1) + d_C \cos \theta(t)$$

$$y(t) = y(t-1) + d_C \sin \theta(t)$$

$$\theta(t) = \theta(t-1) + \theta_C$$

More accurate odometry for small t





$$d_{C} = \frac{1}{2}(d_{L} + d_{R})$$

$$\theta_{C} = \arctan(\frac{d_{R} - d_{L}}{B})$$

$$x(t) = x(t-1) + d_C \cos(\theta(t-1) + \frac{1}{2}\theta_C)$$

$$y(t) = y(t-1) + d_C \sin(\theta(t-1) + \frac{1}{2}\theta_C)$$

$$\theta(t) = \theta(t-1) + \theta_C$$

Wheel encoder

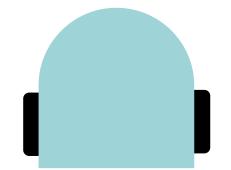
How do we get the distance each wheel has moved?

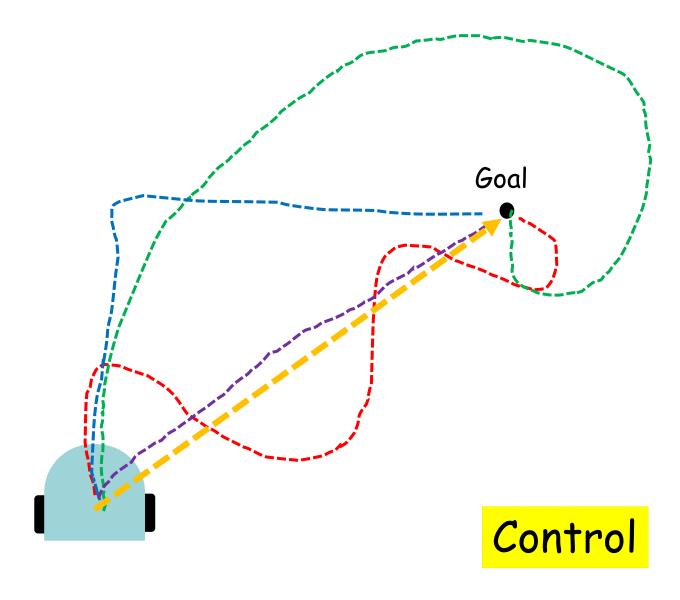
> If the wheel has N ticks per revolution:

$$\Delta n_{tick} = n_{tick}(t) - n_{tick}(t-1)$$

$$d = 2\pi R \frac{\Delta n_{tick}}{N}$$

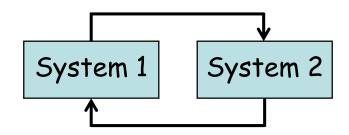
ightharpoonup Thymio: $d = d \triangle t$



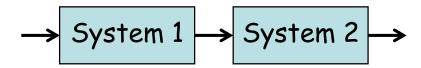


Feedback

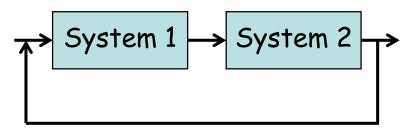
A collection of two or more dynamical systems, in which each system influences the other, resulting in strongly-coupled dynamics



Open loop: the systems are not interconnected (no feedback)

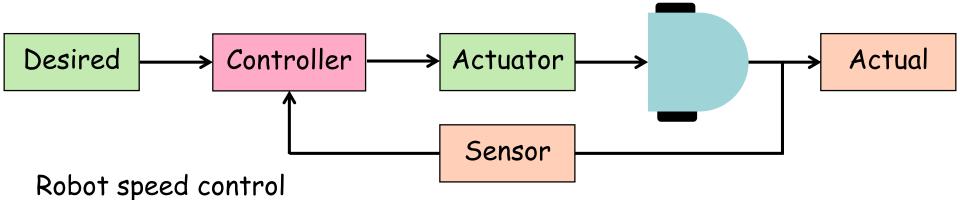


Closed loop: the systems are interconnected (with feedback)



Control

The use of algorithms and feedback in engineered systems



- > Actuator: set the robot's speed
- > Sensor: sense the robot's actual speed
- Control goals: set the robot's speed such that:
 - Stability: the robot maintains the desired speed
 - > Performance: the robot responds quickly to changes
 - Robustness: the robot tolerates perturbation in dynamics

On-off controller

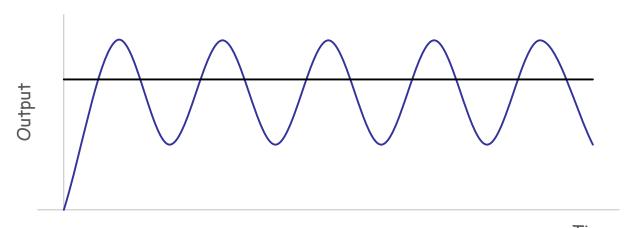
$$u = \begin{cases} u_{max} & \text{if } e > 0 \\ u_{min} & \text{if } e < 0 \end{cases}$$

```
error := set_point - measured
if error > 0.0 then
      output := max
else
      if error < 0.0 then
             output := min
      end
```

end

On-off controller

$$u = \begin{cases} u_{max} & \text{if } e > 0 \\ u_{min} & \text{if } e < 0 \end{cases}$$



Proportional controller

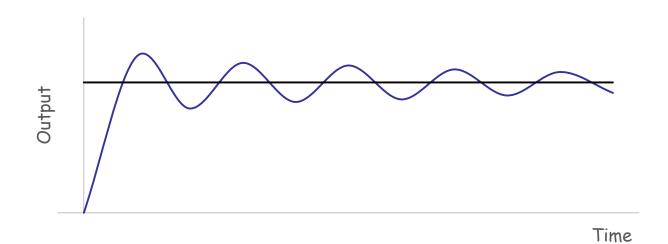
$$u(t) = k_p e(t)$$

error := set_point - measured

output := k_p * error

Proportional controller

$$u(t) = k_p e(t)$$



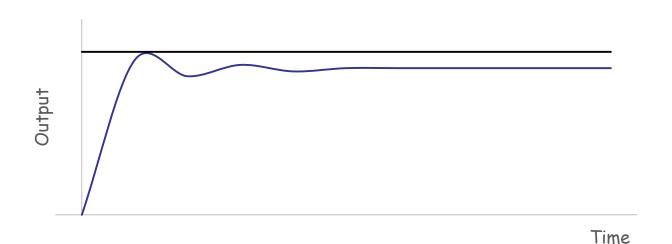
Proportional derivative controller

$$u(t) = k_p e(t) + k_d \frac{de(t)}{dt}$$

```
error := set_point - measured
proportional := k_p * error
derivative := k_d * (error - prev_error)/dt
output := proportional + derivative
```

Proportional derivative controller

$$u(t) = k_p e(t) + k_d \frac{de(t)}{dt}$$



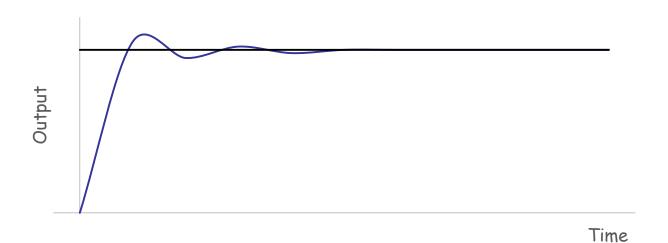
Proportional integral derivative controller

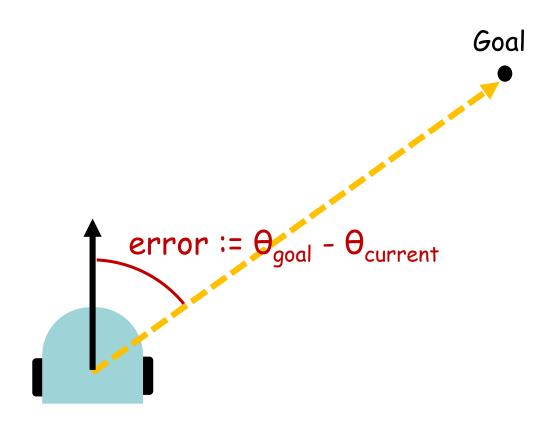
$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$$

```
error := set_point - measured
proportional := k_p * error
integral := k_i * (accumulated_error + error * dt)
derivative := k_d * (error - prev_error)/dt
output := proportional + integral + derivative
```

Proportional integral derivative controller

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$$





Control gains

Control gains

Ziegler-Nicols method

- \triangleright Set K_i and K_d to 0.
- \triangleright Increase K_p until K_u at which point the output starts to oscillate.
- \triangleright Use K_u and the oscillation period T_u to set the control gains.

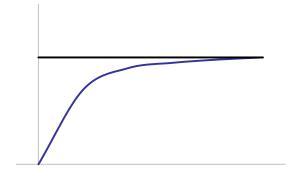
Control Type	K _p	K _i	K _d
Р	0.50K _u	-	-
PI	0.45K _u	$1.2K_p/T_u$	-
PID	0.60K _u	2K _p /T _u	K _p T _u /8

Manual tuning!

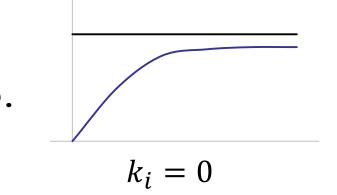
P, PI, PID,?

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$$

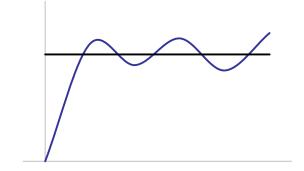
α.



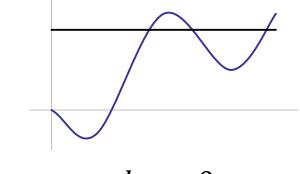
 $k_p, k_i, k_d \neq 0$



C.



 $k_d = 0$



 $k_p = 0$

Software engineering tips

- > Does functionality F belong to class C? In its own class?
- Can functionality F be generalized?
- Is number N a constant? A variable?
- > Should number N be in the source code? Command line input? Read from a file?