
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 2: ROS and Roboscoop

2

Robots of today

 Many sensors and actuators

 Able to operate in familiar or expected environments

 Able to perform specialized tasks

3

Robots of the future

C-3PO

 Provides etiquette, customs,

and translation assistance

 Has own thoughts and feelings

R2-D2

 Rescues people and robots

 Repairs other robots and

complex hardware and software

Advanced robots must be able to operate and

perform tasks in complex, unknown environments.

As robotics advances, we must be aware that

robots can be both helpful and harmful.

4

Concurrency in robotics

Advanced robotic systems have many hardware components that can

operate concurrently.

 Sensors and actuators can run in parallel.

 Locomotion and manipulators can run concurrently.

5

Concurrency in robotics

6

Multiprocessing, parallelism

 Multiprocessing: the use of more than one processing unit in a

system

 Parallel execution: processes running at the same time

Process 1 CPU 1

Process 2 CPU 2
Instructions

P1: Move P2: Scan

7

Multitasking, concurrency

 Interleaving: several tasks active, running one at a time

 Multitasking: the OS runs interleaved executions

 Concurrency: multiprocessing and/or multitasking

Process 1

CPU

Process 2

Instructions

P1: Go to goal P2: Avoid obstacle

Obstacle

8

Concurrency

Benefits of introducing concurrency into programs:

 Efficiency: time (load sharing), cost (resource sharing)

 Availability: multiple access

 Convenience: perform several tasks at once

 Modeling power: describe systems that are inherently parallel

9

Roboscoop

Concurrency framework for robotics

10

Roboscoop software architecture

• Library (set of primitives and tools for their
coordination)

• Integration with other robotics frameworks

• External calls

Roboscoop

• O-O Structure

• Coordination

• Concurrency

SCOOP

• Communication

• Navigation, image processing, coordinate
transforms, visualization, …

ROS

11

ROS: Robot Operating System

ROS: Open-source, meta-operating system for robots

ROS provides the services of an operating system, including

 hardware abstraction,

 low-level device control,

 implementation of commonly-used functionality,

 message-passing between processes, and

 package management

Quigely, M., et al. “ROS: an open-source Robot Operating System,” IEEE International Conference on
Robotics and Automation. 2009.

http://www.ros.org

12

ROS

Goals of ROS

 Support code reuse in robotics research and development.

 Enable executables to be individually designed and loosely coupled

at runtime through its distributed framework of processes.

 Group processes for easy sharing and distribution.

 Enable the distribution of collaboration through its repositories.

Properties of ROS

 Thin

 Peer-to-Peer

 Multi-lingual: C++, Python, Lisp

13

ROS communication

Node

Topic Topic

Publication

Subscription

NodeNode

14

ROS node

Node

 A process that performs computation

 Interchangeable with a software module

 Can generate data for and receive data from other nodes

A system is typically comprised of many nodes: robot control node,

localization node, path planning node, perception node, etc.

Benefits of using nodes

 Fault-tolerance: crashes are isolated to individual nodes

 Reduction of code complexity

15

ROS topic

Topic

 Named bus over which nodes exchange messages

 Has anonymous publish/subscribe semantics.

A node can publish and/or subscribe to multiple topics.

A topic supports multiple publishers and subscribers.

Object

Detection
Path

Planner

Publication Subscription

UI Viewer

Goal Pose

(Topic)

16

ROS message

Message: Strictly typed data structure used for communication

between nodes

Message description specification

 Build-in types

 Names of Messages defined on their own

 Fixed- or variable-length arrays:

 Header type: std_msgs/Header:

uint32 seq, time stamp, string frame_id

 Constants

Messages can be arbitrarily nested structures and arrays.

int16 x

uint32 y

sensor_msgs/LaserScan s

uint8[] data

float32[10] a

Header header

int32 z=123

string s=foo

17

common_msgs

common_msgs

 Messages that are widely used by other ROS packages

 Provide a shared dependency to multiple stacks, eliminating a

circular dependency

Types of common_msgs

 geometry_msgs: Point, Pose, Transform, Vector, Quaternion, etc.

 nav_msgs: MapMetaData, Odometry, Path, etc.

 sensor_msgs: LaserScan, PointCloud, Range, etc.

18

ROS service

Service: A pair of strictly typed messages for synchronous

transactions

Service description specification

 Request messages

 Response messages

Two messages are concatenated together with a ‘---’.

A service cannot be embedded inside another service.

Only one node can advertise a service of any particular name.

Node Node
Service Invocation

int16 x

uint32 y

string s

Response

19

ROS master

Master

 Provides naming and registration services to nodes

 Tracks publishers and subscribers to topics and services

 Enables individual nodes to locate one another

Camera

Images

Master

Image

Viewer

SubscriptionPublication

20

ROS topic transport protocol

TCPROS

 Provides a simple, reliable

communication stream

 TCP packets always arrive in

order

 Lost packets are resent until

they arrive.

UDPROS

 Packets can be lost, contain

errors, or be duplicated.

 Is useful when multiple

subscribers are grouped on a

single subnet

 Is useful when latency is more

important than reliability, e.g.,

teleoperation, audio streaming

 Suited for a lossy WiFi or cell

modem connection.

21

ROS topic connection example

Camera
Image

Viewer

Master

requestTopic(“image_viewer”, “image”, [[TCPROS, “sub:567”]])

[1, “initialize communication”, [TCPROS, “pub:234”]]

Image data message

- XMLRPC - TCPROS

22

ROS package

Package

 A software unit with useful functionality

 Aims to provide enough functionality to be useful but still

lightweight and reusable in other software.

 Can contain ROS runtime processes (nodes), a ROS-dependent

library, datasets, configuration files, etc.

Useful packages for the class

TF: coordinate transformation RViz: 3D visualization

23

Obstacle

TF: Coordinate Transformation

World

Robot

Sensor

/world

/robot1

/sensor1 /sensor3

/robot2

/sensor2

static tf::TransformBroadcaster br;
tf::Transform transform;
transform.setOrigin(tf::Vector3(x, y, 0.0));
transform.setRotation(tf::Quaternion(theta, 0, 0));
br.sendTransform(tf::StampedTransform(transform,
ros::Time::now(), "world", “robot1”);

24

Demo

 ROS publish/subscribe

 TF

 RViz

25

ROS coordinate frame conventions

Axis orientation

 x: forward, y: left, z: up

Rotation representation

 Quaternion: x, y, z, w

 Compact representation

 No singularities

 Rotation matrix

 No singularities

 roll: x, pitch: y, yaw: z

 No ambiguity in order

 Used for angular velocities

26

ROS units

Standard SI units

Base Units Derived Units

Quantity Unit Quantity Unit

Length Meter Angle Radian

Mass Kilogram Frequency Hertz

Time Second Force Newton

Current Ampere Temperature Celsius

Power Watt

Voltage Volt

27

Build system: CMake

Build system

 A software tool for automating program compilation, testing, etc.

 Maps a set of source code (files) to a target (executable program,

library, generated script, exported interface)

 Must fully understand the build dependencies

CMake

 Cross-platform build system

 Controls the build process using a CMakeLists.txt file

 Creates native makefile in the target environment

cmake_minimum_required(VERSION 2.8.3)
project(ProjectName)
add_executable(ExecutableName file.cpp)

28

ROS build system: catkin

catkin

 Official build system of ROS

 CMake with some custom CMake macros and Python scripts

 Supports for automatic 'find package' infrastructure and building

multiple, dependent projects at the same time

 Simplifies the build process of ROS’s large, complex, and highly

heterogeneous code ecosystem

Advantages of using catkin

 Portability through Python and pure CMake

 Independent of ROS and usable on non-ROS projects

 Out-of-source builds: can build targets to any folder
http://wiki.ros.org/catkin/Tutorials

29

<package>
<name>foo</name>
<version>1.2.3</version>
<description>
This package provides foo capability.

</description>
<maintainer email=“me@ethz.ch">Me</maintainer>
<license>BSD</license>

<url>http://www.ethz.ch/foo</url>
<author>Me</author>

<buildtool_depend>catkin</buildtool_depend>

<build_depend>roscpp</build_depend>

<run_depend>roscpp</run_depend>

<test_depend>python-mock</test_depend>
</package>

Dependency management: package.xml

http://wiki.ros.org/catkin/package.xml

Package’s build system tools

Packages needed at build time

Packages needed at run time

Additional packages for unit testing

Required tags

30

Dependency management: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.3)

project(foo)

find_package(catkin REQUIRED COMPONENTS roscpp)

catkin_package(
INCLUDE_DIRS include
LIBRARIES ${PROJECT_NAME}
CATKIN_DEPENDS roscpp
DEPENDS opencv

)

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(foo src/foo.cpp)

add_library(moo src/moo.cpp)

target_link_libraries(foo moo)

http://wiki.ros.org/catkin/CMakeLists.txt

Mimimum Cmake version

Project name

Dependent packages

Include paths for the package
Exported libraries from the project
Other catkin projects this project depends on
Non-catkin CMake projects this project depends on

Location of header files

An executable target to be built

Libraries to be built

Libraries the executable target links against

Installs package.xml and generates code for find_package

31

Roboscoop software architecture

• Library (set of primitives and tools for their
coordination)

• Integration with other robotics frameworks

• External calls

Roboscoop

• O-O Structure

• Coordination

• Concurrency

SCOOP

• Communication

• Navigation, image processing, coordinate
transforms, visualization, …

ROS

32

SCOOP: a brief introduction

Simple Concurrent Object Oriented Programming

 Easy parallelization

 One more keyword in Eiffel (separate)

 Natural addition to O-O framework

 Retains natural modes of reasoning about programs

 Coordination is easy to express: close correspondence with

behavioral specification[1]

[1] Ramanathan, G. et al.: Deriving concurrent control software from behavioral specifications.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1994-1999

33

Object and processor architecture

ROBOT_
CONTROL

PRIMITIVE_
BEHAVIOR

STOP_
SIGNALER

DIFFERENTIAL_
DRIVE

a

stop

drive robot

ROBOT_STATE_
SIGNALER

PRIMITIVE_
BEHAVIOR

b

34

To go straight, to avoid obstacles …

Get the state of the robot

 Location and orientation

 Linear and angular velocity

 Sensory information

Control the velocity

Stop if there is a request for stopping (e.g., emergency stop)

P1: Go straightP2: Avoid obstacle

separate: objects are potentially on a

different processor

r: separate ROBOT_STATE_SIGNALER

d: separate DIFFERENTIAL_DRIVE

s: separate STOP_SIGNALER

Obstacle

35

separate calls

feature
robot: separate ROBOT_STATE_SIGNALER -- Current robot's state
drive: separate DIFFERENTIAL_DRIVE -- Control robot's velocity
stop: separate STOP_SIGNALER -- Whether stop requested

start -- Start the control
local

a, b: separate PRIMITIVE_BEHAVIOR
do

create a.make (stop)
create b.make (stop)
start_robot_behaviors (a, b)

end

start_robot_behaviors (a, b: separate PRIMITIVE_BEHAVIOR)
do

a.repeat_until_stop_requested (
agent a.avoid_obstacle (robot, drive, stop))

b.repeat_until_stop_requested (
agent b.go_straight (robot, drive, stop))

end

36

Synchronization through preconditions

go_straight (a_robot: separate ROBOT_STATE_SIGNALER;
a_drive: separate DIFFERENTIAL_DRIVE;
a_stop: separate STOP_SIGNALER)
-- Move robot unless stopped or an obstacle observed.

require
(not a_robot.is_moving and not a_robot.has_obstacle)
or a_stop.is_stop_requested

do
if a_stop.is_stop_requested then

a_drive.stop
else

a_drive.send_velocity (0.03, 0.0) -- 3cm/sec, no spinning
end

end

37

How do we cancel all processors?

is_stop_requested: BOOLEAN

set_stop (val: BOOLEAN)

STOP_
SIGNALER

GO_STRAIGHT
(BEHAVIOR 1)

AVOID_OBSTACLE
(BEHAVIOR 2)

APPLICATION

stop.is_stop_requested

stop.is_stop_requested

stop.set_stop(FALSE)stop.set_stop(TRUE)

38

Roboscoop

Coordination layer above SCOOP

Three-layer architecture

Synchronization: wait conditions

Interoperability through ROS (external calls)

39

Roboscoop repository structure

roboscoop_app

roboscoop_lib

roboscoop_ros

controller sequencer sensor

common

ros

application.e controller

utils

msgs

signaler

actuator

msg src

...

40

Communication with ROS nodes: publication

roboscoop_app roboscoop_lib
roboscoop_lib/

_cpp
ROS

Topic name:
/aseba/events/sound_cmd

Message type:
asebaros/AsebaEvent

publisher.h
ROS_PUBLISHER

ASEBA_MSG

pub: ROS_PUBLISHER[ASEBA_MSG]

msg: ASEBA_MSG

create msg.make_with_two_values (0, sound_id)

create pub.make_with_topic (“/aseba/events/sound_cmd”)

...

pub.publish (msg)

time stamp
uint16 source
int16[] data

41

ROS
roboscoop_lib

/_cpp
roboscoop_libroboscoop_app

Communication with ROS nodes: subscription

Topic name:
/thymio_driver/odometry

Message type:
nav_msgs/Odometry

subscriber.h
ROS_SUBSCRIBER

ODOMETRY_MSG

sub: ROS_SUBSCRIBER[ODOMETRY_MSG]

sig: ODOMETRY_SIGNALER

create sub.make

...

-- inside a wrapper

sub.subscribe (“/thymio_driver/odometry”,

agent a_sig.update_odometry)

Header header
string child_frame_id
PoseWithCovariance pose
TwistWithCovariance twist

42

Communication with ROS nodes: application

class YOUR_APPLICATION feature

thymio: separate THYMIO_ROBOT -- The robot.
ros_spinner: separate ROS_SPINNER -- ROS spinner object for communication.

some_feature
local

robo_node: separate ROBOSCOOP_NODE
do

-- Initialize this application as a ROS node.
robo_node := (create {ROS_NODE_STARTER}).roboscoop_node

-- Create a robot object.
create thymio.make

-- Listen to ROS.
create ros_spinner.make
start_spin (ros_spinner)

-- Launch Thymio.
launch_robot (thymio)

end

