
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

Assignment 1: Control and obstacle avoidance

ETH Zurich

Individual Demonstration: Thursday, 09.10.2013 at 15:15
Individual Software Due: Thursday, 09.10.2013 at 23:00

Group Work Demonstration: Thursday, 16.10.2013 at 15:15
Group Work Software Due: Thursday, 16:10.2013 at 23:00

It’s time to put your new robot into use. You would like your robot to go to places as you
command, such as fetching beer from the refrigerator. Unfortunately, your apartment is not
empty. You don’t want to have to tell your robot how to avoid every wall and furniture that
may lay in the robot’s way; instead, you would like your robot to use its sensor to avoid them
as it sees necessary.

1 Hardware

1.1 Thymio-II

Thymio-II [4] is a small differential-drive robot with a large number of sensors and actuators,
as shown in Figure 1. The robot is programmable using Aseba - an event-based architecture.
The robot comes with pre-programmed behaviours, namely:

• Friendly (green) - Thymio-II follows the object in front of it.

• Explorer (yellow) - Thymio-II explores the environment while avoiding obstacles.

• Fearful (red) - Thymio-II detects shocks and free falls, and shows the direction of gravity.

• Investigator (cyan) - Thymio-II follows a trail. The trail must be at least 4 cm wide with
high contrast, the best is black on white.

• Obedient (purple) - Thymio-II follows the commands from the buttons or from a remote
control.

• Attentive (blue) - Thymio-II responds to sound. We can control the robot by clapping. 1
clap = go straight ahead / turn. 2 claps = run / stop. 3 claps = turns in a circle.

Play with these pre-programmed behaviours to better understand how different sensors and
actuators of Thymio-II work.

1.2 Carmine 1.09 Sensor

Carmine 1.09 is an RGB+D camera that gives both color and depth information of an environ-
ment. It projects infrared structured light into the environment and calculates the depth by
analyzing the distortion pattern of the structured light. In addition, it has a standard image
camera to capture color information of the scene. The sensor provide an RGB+D image by
registering the depth and color images.

1

https://aseba.wikidot.com/en:thymio

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

Figure 1: Sensors and actuators of Thymio II

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

2 Software

Software installation guide is available here: http://www.roboscoop.org/docs. Follow the in-
stallation guide and install all the necessary software.

2.1 Ubuntu

Ubuntu is a Debian-based Linux operating system and is the officially supported operating
system of ROS. For this course we recommend you to use Ubuntu 14.04 LTS (Trusty). Free
distribution of Ubuntu 14.04 can be found here: http://releases.ubuntu.com/14.04/.

2.2 ROS

ROS (Robot Operating System) [5] provides libraries and tools to help software developers
create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more.

2.3 OpenNI SDK

OpenNI is an open-source framework for “natural interaction”. It provides the driver for
Carmine 1.09 sensor and additional libraries.

2.4 EiffelStudio

EiffelStudio [6] is an interactive development environment, specifically crafted for the Eiffel
method and language. Download a free version of EiffelStudio 14.05 for Linux from Source-
Forge: http://sourceforge.net/projects/eiffelstudio/files.

2.5 Roboscoop

Roboscoop is a robotics framework built on top of Simple Concurrent Object Oriented Pro-
gramming (SCOOP). The source code of Roboscoop is split into three parts: ROS package
roboscoop ros, which is responsible for external communication and external execution (robot’s
software, reused ROS functionality), Eiffel project of Roboscoop library (roboscoop lib - top
level of Roboscoop) and Eiffel project roboscoop app where you can create your applications.

2.6 SVN

Subversion [11] is an open-source version control system, which allows you to keep old versions of
files and directories (usually source code), keep a log of who, when, and why changes occurred,
etc. You will submit your work using an SVN repository. The link will be sent to you via email
in the second week of the semester.

3 Tutorials

At the end of these tutorials, you should be able to communicate with Thymio II using Ro-
boscoop. In particular, you should be able to write code to activate and receive information
from all sensors and actuators of Thymio II.

3

http://www.roboscoop.org/docs
http://releases.ubuntu.com/14.04/
http://www.ros.org/
http://docs.eiffel.com/book/eiffelstudio/eiffelstudio
http://sourceforge.net/projects/eiffelstudio/files/

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

3.1 Ubuntu

If you have never used a Linux operating system, get yourself familiar with the basics of Linux.
Internet has numerous sites and videos that explain Linux operating system in general and
Ubuntu in particular. Some recommended introductions include the official Ubuntu documen-
tation and ”Introduction to Linux” by Garrels [8].

3.2 ROS

Read the ROS tutorials [9]. Follow the beginner level tutorials and perform the suggested
exercises. By the end of the tutorials, you should understand the difference between topics and
services and be able to write a publisher and subscriber node and a service and client node.

TF and RViz packages are useful packages for this class. Follow the tutorials for these
packages and learn how they work.

3.3 Eiffel and SCOOP

Eiffel is an object-oriented language with design by contract and is the base language for SCOOP
(Simple Concurrent Object-Oriented Programming), on which Roboscoop builds. There is a list
of resources for learning Eiffel. In particular, an online tutorial of Eiffel is available here.

The SCOOP concurrency model seeks to remove the gap between the object-oriented con-
cepts and the techniques used for handling the multithreaded or concurrent parts. It brings to
the world of concurrency the same systematic O-O development techniques that have made their
mark in the sequential world. Concurrent Eiffel with SCOOP contains a short description of
SCOOP, and ”Practical framework for contract-based concurrent object-oriented programming”
by Nienaltowski [10] contains a more thorough description.

3.4 Aseba and asebaros

Aseba [7] is a set of tools used to program Thymio II. Aseba is an event-based architecture for
real-time distributed control of mobile robots and targets integrated multi-processor robots or
groups of single-processor units. The Aseba language is described in https://aseba.wikidot.

com/en:asebalanguage, and the programming interface is found in https://aseba.wikidot.

com/en:thymioapi.
Write a program in Roboscoop that can receive information from various sensors and activate

various actuators of Thymio II and ensure that every sensor and actuator is working.

3.5 SVN

Subversion keeps a single copy of the master sources, called the source ”repository”. The source
repository contains all the information to permit extraction of previous versions of its files at
any time.

Some basic commands of SVN are as follows:

• Update: ”Update” brings changes from the repository into the working copy.

svn update

• Commit: ”Commit” sends changes from your working copy to the repository.

svn commit −m ”... commit message ...”

• Add: ”Add” puts files and directories under version control, scheduling them for addition
to the repository. These files and directories will be added in next commit.

4

https://help.ubuntu.com/
https://help.ubuntu.com/
http://tille.garrels.be/training/tldp/
http://www.ros.org/wiki/ROS/Tutorials
http://www.ros.org/wiki/tf
http://www.ros.org/wiki/rviz
 http://docs.eiffel.com/book/guide/learning-eiffel
 http://docs.eiffel.com/book/guide/learning-eiffel
http://docs.eiffel.com/book/method/eiffel-tutorial-et
http://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop
http://se.inf.ethz.ch/old/people/nienaltowski/papers/thesis.pdf
https://aseba.wikidot.com/en:asebalanguage
https://aseba.wikidot.com/en:asebalanguage
https://aseba.wikidot.com/en:thymioapi
https://aseba.wikidot.com/en:thymioapi

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

svn add PATH...

• Delete: ”Delete” removes files and directories from version control.

svn delete PATH...

• Help: ”Help” brings up a list of commands.

svn help

In general, you will svn update to get the latest version controlled files and svn commit to
commit your latest changes. You must commit to send the local changes to the repository.

When you create a new file, you must svn add the file for the file to be under version control.
Any file that is in your local svn directory but is not version controlled cannot be viewed by
other users of the repository. Likewise, any file that is locally deleted but not svn delete’d is
still viewable by other users. Do not forget to svn add files that you want us to see and delete
files that you do not want to be part of your assignment submission.

4 Robot control

4.1 Background

The main objective of robot control is to calculate solutions for the proper corrective action from
the controller that result in system stability, that is, once the system reaches the target point,
the system will stay within a certain distance from the target point without oscillating around
it. Control algorithms can be open loop or closed loop (feedback). In open loop control, you
control the robot without any feedback from the internal or external sensors. Feedback control,
on the other hand, uses internal or external sensing to determine the current error between the
actual and desired state of the robot.

Proportional-Integral-Derivative (PID) control [1] is a popular feedback control design. The
proportional term is proportional to the error between the desired and actual system outputs
and controls how quickly the robot reacts to the error. The integral term is proportional to
both the magnitude of the error and the duration of the error and accelerates the movement
of the process towards the desired output and eliminates the residual steady-state error. The
derivative term is proportional to the slope of the error over time and improves settling time
and stability of the robot.

Mathematically, the PID controller is

u(t) = Kp e(t) +Ki

∫ t

0

e(τ) dτ +Kd
d

dt
e(t) (1)

where u(t) is the control output; Kp, Ki, and Kd are control gains for the proportional, integral,
and derivative terms; e is the error between the desired value and measured value; t is the current
time; and, τ is the total time from time 0 to the current time t.

We can make a robot go to a desired position(goal) by controlling its heading θrobot towards
the goal, as shown in Figure 2. Given the robot’s position (xr, yr) at time t, the heading error
θerror between the robot and the goal position (xg, yg) is

θerror = θgoal − θrobot = arctan(
yg − yr
xg − xr

)− θrobot. (2)

5

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

e r ro r

(xr , yr)

(xg , yg)

g o a l

ro b o t

Figure 2: Control output θ

4.2 Task

Write a PID controller for Thymio II in Roboscoop to control its heading. Your code should
take desired goal position as input and control the heading towards the goal using the PID
controller.

4.2.1 Hints

• Robot odometry: roboscoop thymio navigation driver.py publishes robot’s odometry
at time t and sends velocity command (vx, vz) to the robot. Your job is to send appropriate
velocity commands based on the robot’s odometry.

• Goal tolerance: Consider including a threshold such that the robot stops moving when it
is within a threshold of the goal.

• Linear velocity: Consider making the linear velocity depend on the angular velocity. This
will make the robot slow down when it needs to make a big turn and have a smaller turning
radius.

5 Obstacle avoidance

5.1 Background

Obstacle avoidance is the process of satisfying a control objective without colliding into obsta-
cles. Obstacle avoidance should be written such that in the case of obstacles, the robot makes
appropriate motions around the obstacles while trying to achieve the goal following the shortest
path. If there are no obstacles, the robot should move directly towards the goal location.

TangentBug [2] is an obstacle avoidance algorithm in the Bug [3] algorithm family. The
Bug algorithms combine local planning algorithms with global planning algorithm. With a
minimal introduction of a global model, the Bug algorithms ensure that the purely reactive local
planning algorithms can converge to the desired goal globally. TangentBug is a Bug algorithm,
specifically-designed for range data. The basic idea behind the algorithm is as follows:

1. Move toward the goal T until:

• If the goal T is reached, stop.

6

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

vdesired

vwall

vrobot

ddesired

dcurrent

(x0 , y0)

(x1 , y1)

(x2 , y2)

Figure 3: Control output θ for boundary following

• If an obstacle in the direction towards to goal is detected, go to step 2.

2. Choose a boundary-following direction and move along the obstacle while recording the
minimum distance dmin(T) to the goal T until:

• The goal is reached. Stop.

• If the leave condition holds, i.e., the robot see no obstacle at Vleave such that
d(Vleave, T) < dmin(T), go to step 3.

• If the robot has completed a loop around the obstacle, stop and report that the target
is unreachable.

3. Perform the transition phase. Move towards Vleave until reaching a point Z such that
d(Z, T) < dmin(T), then go to step 1.

In boundary-following, the goal is to keep robot’s heading parallel to the wall while at the
same time keeping the robot a constant distance away from the wall. Figure 3 shows the basic
concept behind boundary following. Taking (x1, y1) and (x2, y2) as the two closest sensor values
to the robot, we can estimate the closest wall vwall as

vwall =

(
x2 − x1
y2 − y1

)
. (3)

The vector perpendicular to the wall is then

vrobot =

(
y2 − y1
−(x2 − x1)

)
. (4)

We can now calculate the distance dcurrent from the robot to the wall vwall as a projection

of the vector vsensor =

(
x1 − x0
y1 − y0

)
from the robot origin (x0, y0) to a point (x1, x2) on the wall

vwall to a unit vector v̂robot, i.e.,

dcurrent = |v̂robot · vsensor| =
(y2 − y1)(x1 − x0)− (x2 − x1)(y1 − y0)√

(y2 − y1)2 + (x2 − x1)2
. (5)

7

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

goal

Vleave

Figure 4: Transitioning to the Vleave

Given the desired distance ddesired between the wall and the robot, we can now compute the
heading θ for the robot from v̂wall and v̂robot as

θ = arctan(
vθ,y
vθ,x

)− θrobot, (6)

where
vθ = ddesiredv̂wall + (dcurrent − ddesired)v̂robot (7)

Note that if the vectors are computed with respect to the robot’s coordinate frame, then
θrobot is zero.

At some point, there is no more obstacle on the robot’s way to the goal. The location in
which the robot can go out of the obstacle avoidance is Vleave as shown in Figure 4. This exit
point Vleave is the first free space that ensures that the robot is closer to the goal than it has
been, i.e., d(Vleave, T) < dmin(T). Once the robot moves to this exit position Vleave, it will be
closer to the goal.

5.2 Task

Write TangentBug obstacle avoidance algorithm in Roboscoop. The TangentBug algorithm
requires three distinctive behaviors: going to the goal, avoid obstacle (following a wall), and
transitioning from obstacle avoidance to going to the goal. Optionally, change robot’s LEDs
color to indicate the current state/behavior.

5.3 Hints

Thymio’s range sensors are limited in number and range. Consider the following modifications
to the original TangentBug algorithm.

• Sensor calibration: Be sure to calibrate properly all the sensors before starting the
controller implementation.

• Obstacle detection: The original algorithm is designed for a point robot, but Thymio
has volume. A minimum of three sensors must be unblocked in the direction of travel for
Thymio to travel safely.

• Obstacle avoidance: In the obstacle avoidance mode select different distance thresholds
for each sensor (when detecting an obstacle) or a unique threshold (if it exists) that you
are sure is inside the working range of all the sensors. This is because the detection range
for one sensor can be much lower than the others. Therefore, you must always ensure

8

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

that all the thresholds you set/use for the control are inside the working range of all the
sensors that you use to control the device. Otherwise, if the controller uses a threshold
that is outside the range of one/more sensors, then the controller is going to behave in
crazy ways and the controller would be unstable or not robust.

• Unreachable goal: Loop closure is a difficult problem and requires tracking of robot’s
trajectory and good sensory information. Consider a simple solution in which your algo-
rithm detects when the robot comes near the starting point of obstacle avoidance after it
has been significantly away from it.

6 Grading

6.1 In-class demonstration (20 points)

You will start at (0, 0) and be given a goal point (x, y) between (−1m,−1m) and (1m, 1m) to
reach.

6.1.1 Individual demonstration (10 points): Thursday, 09.10.2013 at 15:15

In the individual demonstration, you will demonstrate how your accurately your robot reaches
a goal.

• Accuracy (8 points)

– Within 1cm of the most accurate robot: 8 points

– Every 1cm thereafter: -0.5 point

• State indicator (2 points): Change the robot’s color to indicate its state

– Yellow for go to goal

– Green for at goal

• You will get 2 tries. Every extra try will cost 1 point.

6.1.2 Group demonstration (10 points): Thursday, 16.10.2013 at 15:15

In the group demonstration, you will demonstrate as a group how your group’s robot reaches a
goal while avoiding obstacles.

• Accuracy (5 points)

– Within 2cm of the most accurate robot: 5 points

– Every 2cm thereafter: -0.5 point

• Wall following (2 points)

– Wall following more than 1m: 1 point

– No bumping: 1 point

• Transition to goal (2 points)

– Transition from follow wall: 1 point

– Transition back to follow wall: 1 point

• State indicator (1 point): Change the robot’s color to indicate its state

9

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

– Yellow for go to goal

– Red for boundary following

– Blue for transition to goal

– Green for at goal

– Purple if goal is unreachable

• You will get 2 tries. Every extra try will cost 1 point.

6.2 Software quality (20 points)

On the due date at 23:00, we will collect your code through your SVN repository. Every file that
should be considered for grading must be in the repository at that time. Note that EIFGENs
folder in your project contains auxiliary files and binaries after compilation. Please, DO NOT
include EIFGENs folder into your svn repository.

6.2.1 Individual evaluation (10 points): Thursday, 09.10.2013 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

6.2.2 Group evaluation (10 points): Thursday, 16:10.2013 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

References

[1] Astrom, K., and Murray, R. 2008. Chapter 10: PID Control. Feedback Systems: An Intro-
duction for Scientists and Engineers. Princeton University Press.

[2] Kamon, I., Rimon, E., and Rivlin, E. 1998. TangentBug: A Range-Sensor-Based Navigation
Algorithm. The International Journal of Robotics Research. 17(9):934-953.

[3] Lumelsky, V. J., and Stepanov, A. A. 1897. Path-planning strategies for a point mobile
automaton moving amidst obstacles of arbitrary shape. Algorithmica. 2:403-430.

[4] http://www.thymio.org

[5] http://www.ros.org

[6] http://docs.eiffel.com

[7] https://aseba.wikidot.com

[8] Garrels, M. Introduction to Linux. Fultus Corporation. 2010.

10

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

[9] http://wiki.ros.org/ROS/Tutorials

[10] Morandi, Benjamin. Prototyping a concurrency model. PhD Dissertation, ETH Zurich,
2014.

[11] http://subversion.apache.org/

11

	Hardware
	Thymio-II
	Carmine 1.09 Sensor

	Software
	Ubuntu
	ROS
	OpenNI SDK
	EiffelStudio
	Roboscoop
	SVN

	Tutorials
	Ubuntu
	ROS
	Eiffel and SCOOP
	Aseba and asebaros
	SVN

	Robot control
	Background
	Task
	Hints

	Obstacle avoidance
	Background
	Task
	Hints

	Grading
	In-class demonstration (20 points)
	Individual demonstration (10 points): Thursday, 09.10.2013 at 15:15
	Group demonstration (10 points): Thursday, 16.10.2013 at 15:15

	Software quality (20 points)
	Individual evaluation (10 points): Thursday, 09.10.2013 at 23:00
	Group evaluation (10 points): Thursday, 16:10.2013 at 23:00

